Rationality problems for relation modules of dihedral groups
نویسندگان
چکیده
منابع مشابه
On the Tensor Products of Modules for Dihedral 2-Groups
The only groups for which all indecomposable modules are ‘knowable’ are those with cyclic, dihedral, semidihedral, and quaternion Sylow p-subgroups. The structure of the Green ring for groups with cyclic and V4 Sylow p-subgroups are known, but no others have been determined. Of the remaining groups, the dihedral 2-groups have the simplest module category but yet the tensor products of any two i...
متن کاملOn the Vertices of Indecomposable Modules over Dihedral 2-groups
Let k be an algebraically closed field of characteristic 2. We calculate the vertices of all indecomposable kD8-modules for the dihedral group D8 of order 8. We also give a conjectural formula of the induced module of a string module from kT0 to kG where G is a dihedral group G of order ≥ 8 and where T0 is a dihedral subgroup of index 2 of G. Some cases where we verified this formula are given.
متن کاملLie powers of relation modules for groups
Article history: Received 20 November 2008 Available online 17 November 2009 Communicated by Peter Webb In memoriam Karl Gruenberg
متن کاملCalculations of Dihedral Groups Using Circular Indexation
In this work, a regular polygon with $n$ sides is described by a periodic (circular) sequence with period $n$. Each element of the sequence represents a vertex of the polygon. Each symmetry of the polygon is the rotation of the polygon around the center-point and/or flipping around a symmetry axis. Here each symmetry is considered as a system that takes an input circular sequence and g...
متن کاملAffine buildings for dihedral groups
We construct rank 2 thick nondiscrete affine buildings associated with an arbitrary finite dihedral group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.04.015